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Abstract—Text visual question answering (TextVQA) targets
at answering the question related to texts appearing in the given
images, posing more challenges than VQA by requiring a deeper
recognition and understanding of various shapes of human-
readable scene texts as well as their meanings in different con-
texts. Existing works on TextVQA suffer from two weaknesses:
i) scene texts and non-textual objects are processed separately
and independently without considering their mutual interactions
during the question understanding and answering process, ii)
scene texts are encoded only through word embeddings without
taking the corresponding visual appearance features as well as
their potential relationships with other non-textual objects in
the images into account. To overcome the weakness of existing
works, we propose a novel multi-modal contextual graph neural
network (MCG) model for TextVQA. The proposed MCG model
can capture the relationships between visual features of scene
texts and non-textual objects in the given images as well as utilize
richer sources of multi-modal features to improve the model
performance. In particular, we encode the scene texts into richer
features containing textual, visual and positional features, then
model the visual relations between scene texts and non-textual
objects through a contextual graph neural network. Our extensive
experiments on real-world dataset demonstrate the advantages
of the proposed MCG model over baseline approaches.

I. INTRODUCTION

Visual Question Answering [2], aiming to correctly an-
swer natural language questions given images, has been a
key problem towards image understanding and cross-modal
intelligence. Besides, as shown in [29], the current VQA
models do not own the ability to read scene text information
in images like humans, limiting the applicability of VQA
models in many real-world scenarios. For example, in visually-
impaired assistant devices, most of the user requests may
involve the scene text containing information that the users
are interested in. The users may ask ‘What time does my
phone display?’ or ‘What number is my heartbeat recorder
displaying?’. To handle these problems, text visual question
answering (TextVQA) targets at exploring the ability to ana-
lyze images, questions and scene texts, as well as figuring out
the correct answer based on the image objects information and
scene text contents, which poses more challenges than VQA
by requiring a deeper understanding of the meanings of various
human-readable scene texts in different contexts.

Existing works on TextVQA [3], [19], [29] isolate the scene
texts away from other non-textual objects by processing pre-
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Fig. 1. Illustrations of the task, and model structure. On the top, the
question asks the details about a license plate which requires a comprehensive
understanding of objects and scene texts. In the bottom, we illustrate our
model, which consists of a visual feature, scene texts feature extractor, and
the GNN-based contextual information propagation mechanism. Besides, the
dynamic answer prediction enables us to predict the answers which could
only be seen in the specific image

extracted OCR tokens and visual features separately, ignoring
the relationships between the scene texts and other non-textual
objects in the given images. Take the scene in Fig. 1(a) as an
example, existing TextVQA models will fail to predict the
correct answer to the question such as “What is the license
plate of the white car?”. This is because current models
process scene texts and objects separately, which means they
could never distinguish the two licence plates without knowing
the relationship between licence plates and cars. Besides,
to correctly answer the aforementioned question, it is also
necessary to get the position of the license plate and car as well
as the color of the car, indicating that a good TextVQA model
should obtain a comprehensive understanding about the scene
texts, the non-textual objects and their relationships. However,
given the complex and diverse contents in real-world images,
precisely generating a comprehensive description for each of
the scene texts and non-textual objects as well as capturing
their relationships in these images is very challenging.

To tackle the challenges, we propose a novel multi-modal
contextual graph neural network (MCG) model for TextVQA
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in this paper. Our proposed MCG model is capable of cap-
turing the relationships between scene texts and non-textual
objects to improve model performance. The MCG model also
utilizes richer sources of multi-modal features including visual,
textual and positional features for a better understanding of the
scene texts and non-textual objects in the given images. Partic-
ularly, we encode the scene texts into richer features containing
textual, visual and positional features, then model the visual
relations between scene texts and non-textual objects through a
contextual graph neural network. We aggregate visual features,
textual features, positional features and contextual relation
features together in a non-trivial way such that the information
for both textual and visual objects in the images can be as
comprehensive as possible. Fig. 1(b) illustrates the overview
picture of our MCG model. The extensive experiments on real-
world dataset validate the effectiveness of the proposed MCG
model against existing TextVQA approaches. Our contribu-
tions can be summarized as follows,

• We propose a novel multi-modal contextual graph neural
network (MCG) model for TextVQA, which is able to
capture the relationships between visual features of scene
texts and non-textual objects in the given images.

• We non-trivially aggregate richer sources of multi-modal
features including visual, textual and positional features
as well as the contextual relation features together for bet-
ter understanding the scene texts and non-textual objects
in the given images.

• We conduct extensive experiments on real-world
TextVQA dataset and show that our proposed MCG
model outperforms baseline methods on TextVQA in
various aspects.

II. RELATED WORK

Given that we utilize graph to capture the relations between
scene texts and non-textual objects, we review related works
on VQA, graph based VQA and TextVQA, three categories of
works that are most relevant to our work in this section.

A. Visual Question Answering

Visual Question Answering (VQA) is a classical but impor-
tant task towards visual and lingual co-understanding. Recent
years, with the development of deep learning techniques, the
research communities have been paying more attentions to this
task in the domain of images [2], [10], [13] or videos [6],
[8], [36]. The communities’ interests include the image and
question feature processing [14], [18], answer encoding [7],
[21]. For better processing the features, we have tried attention
mechanism [1], relation networks [17]. For answer encoding
and prediction, we have tried to rank the answers with respect
to each image, or to predict the answer from the huge
candidate pools collected from the huge training set. These
works have promised us a lot towards the visual and lingual
co-understanding, and we will introduce more details about
VQA in the followed several paragraphs.

B. Graph Based Visual Question Answering

The graph based VQA models can be categorized according
to the type of the graph constructing methods, i.e., either the
graphs be constructed are scene graphs or knowledge graphs.
There has been several works utilizing scene graphs [17],
[22], [34]. In particular, Xiong et.al. [34] focuse on single
scene VQA, relying on reasoning over entity graphs. Norcliffe
et.al. [22] learn image representations that capture question
specific relations via combining a graph learning module
and graph convolutions. Li. et.al. [17] propose the ReGAT
model which encodes images into graphs and uses the graph
attention mechanism to model multi-type inter-object relations.
On the other side, utilizing knowledge graph to enhance VQA
performance is becoming a popular trending in VQA models
[31], [20], [26], [32], [38]. These works utilize knowledge
graph to get complementary and useful external knowledge
with the help of memory network [33] and its variants.

C. Text Visual Question Answering (TextVQA)

As a relatively new task, TextVQA aims to overcome the
insurmountable difficulties faced by traditional VQA models
which do not have the ability to take the scene texts as extra
visual clues when predicting answers. There are several works
on TextVQA [3], [19], [27], [29]. To be specific, Singh.
et.al. [29] proposed LoRRA which first takes care of the scene
texts alone and then fuses it with results from other modalities
such as textual questions and visual objects. This work extends
the standard OCR token vocabulary obtained by the OCR ex-
tractor to a dynamic vocabulary. Similarly, Mishra. et.al. [19]
first extract OCR tokens separately before fusing them with
results from other modalities. Biten. et.al. [3] provide a series
of tasks on TextVQA along with a baseline method which
enlarges the vocabulary and employs the attention mechanism
on image and OCR together. Singh. et.al. [27] take the external
knowledge into TextVQA with the help of knowledge graph,
and propose a new dataset named text-KVQA.

III. MCG:MULTI-MODAL CONTEXTUAL GNN FOR
TEXTVQA

In this section, we will briefly describe the task formulation,
followed by a detailed introduction on our proposed MCG
model for TextVQA.

A. Task Formulation

In vanilla VQA task, the target is to infer the answer
a ∈ A, given an image I and a question q grounded in
the image, where A is the candidate answer set shared by
all images. However, in many real-world scenarios such as
road navigation, completing a task or answering a question
requires not only visual objects but also precise scene texts
in the captured images, which leads to the fact that merely
relying on results from implicit CNN based models becomes
inadequate. This motivates the advent of TextVQA problem
in which the answer set is expanded to A + Â, where A
is defined the same as VQA while Â is an image-specific
candidate answer set containing scene texts as well as their
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Fig. 2. The illustration of relation categories definition when IoU between
two objects is less than 0.5 [35]. Under this situation, class index is relying
on the size of relative angle θij , set as (θij/45

◦) + 3 (class 4-11).

possible combinations appearing in that image. The TextVQA
problem is formally defined as follows:

a = arg max
a∈Â+A

Pθ(a|I, q), (1)

where Pθ is the model to be learned. Inspired by [1], we
explicitly model the non-textual objects O and scene texts S
in the image simultaneously through expanding (1) as follows:

a = arg max
a∈Â+A

Pθ(a|S,O, q) ·Qφ1
(S|I) ·Qφ2

(O|I), (2)

where Qφ1 is a pre-trained OCR token extractor [5] and Qφ2

is a pre-trained objects extractor bases on Faster-RCNN [25].
As such, we finish the representations of image, question,
scene text and objects, and turn our focus towards the non-
trivial relations between the decoupled scene texts, non-textual
objects and questions.

To tackle the aforementioned task, in this paper, we propose
the Multi-model Contextual GNN model. Our MCG model
consists of 3 components:
• Encoding component that encodes scene texts, non-

textual objects and questions into appropriate latent rep-
resentations

• Relation modeling component that employs contextual
graph neural network to capture the relationships between
visual features of non-textual objects and scene texts.

• Multi-modal fusion and dynamic prediction com-
ponent that first aggregates visual, textual, positional,
relational features together and then predicts the final
answer through constructing a dynamic candidate answer
set for each of the images.

Fig. 3 presents the details for the proposed MCG model, which
will be detailedly introduced in the following sections.

B. Encoding Component

Given an image I and a question q, as stated above, we
encode non-textual objects and scene texts extracted by pre-
trained extractors [5], [25], and encode questions with pre-
trained word embedding model [24].

Specifically, the non-textual object features O = {oi}Ki=1

are extracted with a pre-trained Faster-RCNN model, where
K is the number of objects. Each object feature oi includes
a visual feature vector v

(o)
i ∈ Rdv extracted from the

RCNN fully-connected layer and a bounding box b
(o)
i =

TABLE I
DEFINITION OF SPATIAL RELATION BETWEEN EVERY TWO OBJECTS.

Class ID Relation IoU
1 inside –
2 cover –
3 overlap IoU≥0.5

4-11 rely on θij (Fig. 2) IoU<0.5

[xmin/Wimg, ymin/Himg, xmax/Wimg, ymax/Himg] indicat-
ing the top-left and bottom-right coordinates of the bounding
box. i.e. oi =

[
v
(o)
i , b

(o)
i

]
.

For the scene texts in the image, we apply scene text detec-
tor [5] to identify tokens in the image. We denote the extracted
scene texts as S = {si}Mi=1, where si =

[
ti, b

(s)
i ,v

(s)
i

]
represent the tokens, visual bounding box, and visual feature,
respectively. ti and b

(s)
i are the output OCR tokens and region

bounding boxes from the OCR extractor. v
(s)
i is extracted

through feeding the bounding box b
(s)
i into the Faster-RCNN

model. We extract the visual feature for each OCR region to
capture the visual clues in that OCR region, e.g., the color,
texture and font of the text etc.

As for the question q = {w1, w2, w3. . . wn}, we follow the
common practice as in other VQA works. We first project the
words into an embedding space using a pre-trained word vector
model (e.g., GloVe [24]), then encode the resulting word em-
beddings together with a recurrent network (e.g., LSTM [11])
into corresponding sentence representation q ∈ Rdq .

C. Relation Modeling Component

Simply encoding non-textual objects and scene texts sep-
arately (as in [29]) is not enough to well understand the
image in the context of the given question. This is because
the relationships between non-textual objects and scene texts
play an important role in comprehensively understanding the
image and correctly answering the question. Moreover, it is
also necessary to figure out the useful information in the
context of different questions so that the answers to different
questions can be correct (and different). Therefore, we propose
our multi-modal contextual GNN to capture the relationship
between non-textual objects and scene texts with in the context
of different questions.

To start, we represent the union of the visual features of
the non-textual objects and scene texts as V = {vi}K+M

i=1 =

{v(o)
i }Ki=1

⋃
{v(s)

i }Mi=1. We first build a graph whose nodes
represent the non-textual objects and scene texts, and whose
edges represent the relationships between them. Let G =
(V ,E) denote the graph, where the nodes V denote the non-
textual objects or scene texts, and the edges E capture the
spatial relationships between the nodes. As the constructed
graph does not distinguish between non-textual objects and
scene texts, we refer objects to both non-textual objects and
scene texts for succinctness.

1) Graph Construction: Spacial Relationship Modeling.
We construct the graph to capture the spatial relationships

between objects, i.e., the edges between nodes (objects)
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Fig. 3. Details about our MCG model which contains question encoder and image encoders. Question encoder extracts Fast-Text features and image encoder
extracts features of non-textual objects as well as scene texts through aggregated results from question-contextual GNN. Various multi-modal features of
non-textual objects, scene texts and questions are combined through the multi-modal fusion procedure. A dynamic candidate answer set tailored for each
image is then constructed with a shared fixed answer set containing common candidate answers shared across all images, e.g., Dog, Car, and an image-specific
candidate answer set containing scene texts appearing in the target image, e.g.,the licence plate numbers. The final answer is predicted from the dynamic
candidate answer set.

indicate the spatial relationships between objects. We
define 11 categories of spatial relationships to describe
the relative positions of objects [35]. For example,
the relationships between objecti and objectj could be
〈objecti − inside− objectj〉, 〈objecti − cover − objectj〉,
〈objecti − left− objectj〉 (More relationships see Fig. 2
and Tab. I). Moreover, unlike Norcliffe et.al. [22] who
consider the relationship between every two objects, we
only consider those relationships whose head objects and
tail objects are not far away from each other because
the spatial relationships between objects would tend to
be weak if their spatial distances are large. In Summary,
E = {eij |vi,vj ∈ V , Re(vi,vj) = 1 ∧DIST (vi,vj) < δ}
where Re is the relation indication function for relation e and
DIST is the spatial distance calculation function.

2) Contextual Node Feature: Context adaptation.
Questions with no doubt provide significant guidance for

extracting effective visual features in images and analyzing
their relations in different contexts. Hence taking questions
into consideration when conducting node feature aggrega-
tions in our contextual GNN model will help to increase
the accuracies of answering questions. It is desirable that
the semantic information in questions can exclusively and
contextually guide the GNN aggregation process, so that those
nodes having high relevance with the questions are assigned
with high weights. Given a graph G = (V ,E) and question q,
we design a mechanism to obtain a contextual representation
for each node with the target question q as the context:

v
(q)
i = σ (q ·Wqvi) , i = 1, 2, · · · ,K +M, (3)

where Wq ∈ Rdh×dv is the context-adapted projection matrix,
σ(·) is a non-linear function such as ReLU.

3) Graph Attention: Multi-head Attention.
Given the fact that the influences of neighbor nodes on

the target node may origin from multiple aspects, we in-
corporate the multi-head attention mechanism [30] into the
neighborhood feature aggregation process of our contextual
GNN. Given Graph G = (V ,E), the feature aggregation for
layer h of a vanilla GNN containing several layers can be
written as follows:

vh+1
i = σ

∑
j∈Ni

αij ·Whv
h
j

 , (4)

where W h ∈ Rdh+1×dh is the learnable projection matrix
and αij is the attention weight. To incorporate the multi-head
attention mechanism, we set the attention weight for the l-th
head αlij as:

αlij =

exp

((
U lvhi

)>
· V lvhj

)
∑
j∈Ni

exp

((
U lvhi

)>
· V lvhj

) , (5)

where U l and V l are the learnable projection matrices, and (·)
refers to the scaled dot production used to compute the inner
product between U lvhi and V lvhj to measure their similarity.
The denominator is used to normalize the attention weights.
Totally L independent attention heads are executed and the
outputs from these heads are concatenated, resulting in the
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following aggregated feature representation for node i in the
h+ 1 layer:

vh+1
i =

∥∥∥∥∥∥Ll=1σ

∑
j∈Ni

αlij ·Wh
lvhj

 , (6)

where || is the concatenation operation. Suppose the graph
attention module has K layers, we then rewrite the K-th layer
aggregated node feature {vKi }

K+M
i=1 as {v∗i }

K+M
i=1 to represent

the final results from our multi-head graph attention operation.
Also, we decouple the non-textual object features and scene
text features from {v∗i }

K+M
i=1 and denote them as {v(o),∗

i }Ki=1

and {v(s),∗
i }Mi=1, respectively.

D. Multi-modal Fusion and Dynamic Prediction Component

Besides the visual features and their contextual relations,
semantic meanings carried in scene texts and their positions
are also important for answering questions related to scene
texts. Instead of modeling the semantic contents separately,
we propose to combine them with with positional features and
contextual aggregated features together in a multi-modal way
to further improve the prediction accuracy.

In detail, given the textual feature of the token sequence in
scene text ti, the raw visual feature of scene text v

(s)
i , the

contextual aggregated visual feature v
(s),∗
i and the positional

feature b
(s)
i obtained from bounding box of the scene text, we

concatenate these feature to form the final representation for
scene text si as follows:

si =
[
ti

∥∥∥ (v(s)
i + v

(s),∗
i

) ∥∥∥ bi

]
, for i = 1, . . . ,M,

(7)
where [·‖·] means concatenation and M is the number of scene
texts in the image. Specially, to prevent the dimension from
becoming uncontrollable, we employ a residual connection
representation (vi + v∗i ) for visual features.

To summarize, the representations for non-textual objects
are obtained from our contextual GNN and the representations
for scene texts contain textual information, visual information,
influencing information obtained from contextual GNN and
positional information from the bounding boxes of scene texts.

Given the non-textual object v(o) and scene text s, we pass
them to the effective top-down attention module [1], denoted
as TD(·), to obtain their final representations:

O =
[
TD

(
{v(o)

i }
K
i=1, q

) ∥∥∥ TD ({v(o),∗
i }Ki=1, q

)]
, (8)

S = TD
(
{s}Mi=1, q

)
, (9)

where O and S denote the final representations of non-textual
object and scene text respectively.

Note that, the ordering information of scene text token
gets lost after passing through the top-down attention module
because the features are weighted averaged. To provide the
ordering information for the answer predicting procedure,
we concatenate the attention weights and the output features
from top-down attention module together, allowing the answer

predicting module to know the original attention weights for
each token in order.

Differing from vanilla VQA problem where the candidate
answer set is fixed, the candidate answer set in TextVQA is
dynamically changing for different images because different
images may have different scene texts that could also be the
answer potentially). Therefore, we follow previous work [29]
to construct a dynamic candidate answer set for each image.
We extend the fixed candidate answer set of size F to a
dynamic candidate answer set of size F+M, where the first
F slots contain the common candidate answer set shared
across all images and the last M slots contain the scene texts
appearing in a particular image.

Finally, we learn a 2-layer MLP over the concatenated O
and S to generate the prediction of our MCG model for each
answer to the question:

p =MLP ([O ‖ S]) , (10)

where p is the binary probability as logits for each answer and
binary cross entropy is adopted as the loss function to train
the model [1].

IV. EXPERIMENTS

We evaluate our approach on a challenging dataset
TextVQA [29], and our model outperforms previous work on
this dataset.

A. Datasets

TextVQA is a new dataset collected in order to address the
task of answering questions that requires analyzing scene text
in images. TextVQA contains 28,408 images selected from
Open Images v3 dataset [16]. The questions require reasoning
about the scene text in the image, and there are 10 answers
collected for each question. The challenge of TextVQA dataset
is that 26,263 (49.2%) answers are unique leading to the
answer space a high diversity, including brand names, cities
people’s names, etc., resulting in the difficulty of having a
fixed answer space that is used in the most existing VQA
datasets.

B. Implementation Details

To generate question embedding, every word in the question
is tokenized and embedded by a 300-dimensional GloVe [24]
word embedding, then the sequence of embedded words is fed
into a LSTM with self-attention [37].

For the non-textual object extraction, following [28] and
[29], we extract visual features from fc6 layer of an improved
Faster R-CNN detector [25] pre-trained on the Visual Genome
dataset [15], and we fine-tune the fc7 weights during training
[12] to get the 2048-dimension object visual features.

For the scene texts, we use text tokens and bounding boxes
extracted by Rosetta OCR system [5] provided in TextVQA
dataset. Furthermore, in order to obtain the visual feature of
the scene text object, we feed the bounding box of each scene
texts into ROI-pooling layer of a pretrained faster RCNN. We
also extract FastText [4] embedding feature for each scene text
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TABLE II
OVERALL MODEL PERFORMANCE COMPARISION. THE VALIDATION SET ACCURACY (VAL)IS COMPUTED LOCALLY, WHILE THE TEST SET ACCURACY

(TEST) IS OBTAINED THROUGH THE ONLINE JUDGING SYSTEM.

Model Object Combine OCR Combine No.of GNN Layer Rich OCR Feature Acc. on Val Acc. on Test
LoRRA [29] – – – – 26.56% 27.63%
MCG(max-pooling) – – 1 yes 17.85% 17.34%
MCG residual residual 1 yes 29.29% 29.29%
MCG 2 att. concat. 1 yes 27.68% 27.91%
MCG 2 att. residual 1 no 27.81% 27.98%
MCG 2 att. residual 2 yes 28.71% 29.06%
MCG 2 att. residual 1 yes 29.40% 29.61%

What is the name of the hotspot?

LoRRA: gates
MCG: vodafone

What company is on the advert?

LoRRA: zemel

MCG: nationwide

What kind of gps logger is it?

LoRRA: peceoi
MCG: wireless

What brand is the yellow box?

LoRRA: eauking

MCG: triscuit

How much time is left on the washing 

machine?
LoRRA: 0
MCG: 120

What city is named?

LoRRA: new york

MCG: martinborough

Fig. 4. Qualitative examples from our MCG model on TextVQA test set. We circle the resulting visual clue of OCR tokens predicted by our MCG model
in green, and predicted by LoRRA [29] in red. Comparing to the previous model LoRRA, MCG model is better-preformed in building the relation among
question, visual clue of image and scene text tokens.

token. In the contextual GNN process, we employ multi-head
attention with 16 heads, and the dimension of each hidden
layer of GNN is 2048.

Our model is implemented based on PyTorch [23] and
Pythia [28] framework. During training, we use Adamax
optimizer with mini-batch size as 128. We deploy the warm-
up strategy [9] and the initial learning rate is 0.002, then
we linearly increase it at each iteration till it reaches 0.01
at iteration 1000. We also use staircase learning rate schedule,
where we reduce the learning rate by a factor 0.1 at the 14000-
th and 19000-th iterations.

C. Result and Ablation Study

The evaluation result of our MCG model is shown in
Tab. II, and our model outperforms previous work LoRRA[29]
by about 2% accuracy improvement on the online test set
of TextVQA. The success sample and failure sample are
demonstrated in Fig. 4 and Fig. 5 respectively. By analyzing
and comparing success samples, we can draw the conclusion
that our MCG model is better-performed than LoRRA [29] in
modeling the relation among question, objects visual feature
and OCR tokens. Particularly, MCG is more capable of
spotting visual clue of corresponding scene text on the basis
of question demand. For example, for one of the questions
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How many way stop is this sign for?

LoRRA: 3

MCG: all

Human: 4

What is the largest number on the top row 

of this ruler?

LoRRA: 22

MCG: 27

Human: 28

What does it say in blue?

LoRRA: kullik

MCG: ilihakvik

Human: kullik ilihakvik

Fig. 5. Faulty examples from our MCG model on TextVQA test set. We further circle the vital visual clue for predicting the correct answers in yellow.
Excluding the effect of imperfections of scene text token extractor, we can infer that previous work LoRRA and our MCG model are weak in 2 aspects: 1)
do not have the ability in predicting answers that require more than 1 token. 2) unable to split extracted OCR tokens according to the semantic clue given in
question (e.g. 4-WAY in sample 1).

in Fig. 4 “What city is named?”, MCG is able to relate the
key word “city” with the specific visual clue and then predict
the correct answer “martinborough” rather than select a city
name from the fixed answer set. For the failure samples, if we
exclude the negative effect of imperfections of extracted OCR
tokens, it can be deduced that MCG and LoRRA are weak in 2
aspects: 1) can only produce one OCR token as the predicted
answer. 2) are not capable of splitting extracted OCR tokens
on the demand of semantic clues given in question.

In Tab. II, we also compare four ablated instances of MCG
with is complete form. To analyze the performance of each
instance, we compare the predicting accuracy on test set of
TextVQA.

1) Ablations on object feature concatenation: Firstly, we
validate the effectiveness of the concatenation strategy of
combining original and attented visual feature of non-textual
object. There are two relatively effective combination strategy,
one is as mentioned in Sec. III-D, and the alternative one
introduces residual between original and contextual visual
feature. The comparison between line 4 and line 8 shows
a gain of +0.32% for concatenation rather than residual.
Secondly, we validate the effectiveness of the residual strategy
of combining scene text object visual feature before and after
GNN. In contrast, between line 5 and line 8, we see a gain
of approximately +1.7% for the residual strategy. Hence we
can conclude that residual combination of scene text object is
critical for MCG model.

2) Ablations on fusion between GNN output and question:
To verify the significant improvement on MCG’s performance
of applying question attention over GNN outputs. We cancel
the top-down attention for GNN output nodes, instead, sim-
ilar to [22], we apply max-pooling on GNN output nodes,
then multiply the max-pooling result with question to make
question involved. To enrich the representation of scene text

token in this condition, we concatenate the visual feature and
FastText [4] embedding of OCR tokens. In the comparison
between line3 and line8, we observe a huge gain of +12.27%
for applying question attention over the output nodes of GNN.
Besides, we also ablate the influenced MCG performance on
number of GNN hidden layers. Comparing line 7 and line 8,
there is a +0.55% gain for one-hidden-layer GNN.

3) Ablations on rich representation of scene text: In order
to validate the effectiveness of diverse feature representation
on scene text, which is an important strategy in our model,
similar to LoRRA [29], we remove the feature other than
FastText [4] embedding, and the result is presented in line
6. Between line6 and line8, we can observe a relatively large
gain of +1.63% for rich representation.

V. CONCLUSION

In this paper, we study the problem of TextVQA. We pro-
pose a multi-modal contextual graph neural network (MCG)
model which utilizes a much richer multi-modal representation
for scene texts containing visual, textual, positional and rela-
tional features to make full use of the available information
in the given images. To capture the relational features, we
construct a relation graph for non-textual objects and scene
texts and employ a question-contextual graph neural network
(GNN) to generate the contextual aggregated features for both
non-textual objects and scene texts. Our extensive experiments
demonstrate the efficacy of the proposed MCG model against
existing literature.
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